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Abstract

Pressure dipoles are important long distance climate
phenomena (teleconnection) characterized by pres-
sure anomalies of opposite polarity appearing at two
different locations at the same time. Such dipoles
have proven important for understanding and ex-
plaining the variability in climate in many regions
of the world, e.g., the El Niño climate phenomenon
is known to be responsible for precipitation and tem-
perature anomalies worldwide. This paper presents
a novel approach for dipole discovery that outper-
forms existing state of the art algorithms. Our ap-
proach is based on a climate anomaly network that
is constructed using the correlation of time series of
climate variables at all the locations on the Earth.
One novel aspect of our approach to the analysis of
such networks is a careful treatment of negative cor-
relations, whose proper consideration is critical for
finding dipoles. Another key insight provided by our
work is the importance of modeling the time depen-
dent patterns of the dipoles in order to better capture
the impact of important climate phenomena on land.
The results presented in this paper show that these
innovations allow our approach to produce better re-
sults than previous approaches in terms of match-
ing existing climate indices with high correlation and
capturing the impact of climate indices on land.

1 Introduction

Teleconnections, i.e., long distance connections be-
tween the climate of two places on the globe, have
proven important for understanding and explaining
the variability in climate in many regions of the world.
Typically, these teleconnections are represented by
time series known as climate indices [20], which are
often used in studies of the impact of climate phenom-
ena on temperature, precipitation, and other climate
variables. One important class of climate indices are
pressure dipoles,∗ which are characterized by pres-
sure anomalies of opposite polarity appearing at two
different locations at the same time.
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∗Climate variables other than pressure can be involved in

dipoles. For example, the Dipole Mode Index (DMI) [4], which

has been investigated in relation to the Indian Monsoon.

Scientists have known of the existence of such
dipoles for about a century. Two of the best known
pressure dipoles are the North Atlantic Oscillation
(NAO) and the Southern Oscillation (SO). NAO,
which measures the difference in anomalies in pres-
sure between Akyureyri in Iceland and Ponta Del-
gada in the Azores, captures the large scale atmo-
spheric fluctuations between Greenland and northern
Europe. A positive NAO index, which involves higher
than normal pressure in northern Europe and lower
than normal pressure around Iceland, is believed to
be connected to warm and wet winters in Europe
and cold and dry winters in northern Canada and
Greenland. Conversely, a negative NAO index is as-
sociated with colder conditions in Europe and milder
winters in Greenland. Figure 1 shows the time series
of pressure anomalies for both Ponta Delgada (mea-
sured at 37.5N, 25W) and Akyureyri (measured at
65N, 17.5W).
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Figure 1: Pressure anomaly time series for the North
Atlantic Oscillation. Note that these anomaly time
series were constructed from the raw data by remov-
ing the monthly means from each time series.

The Southern Oscillation index (SOI) is mea-
sured as the difference in the pressure anomalies at



Table 1: List of major pressure based climate indices.

Dipole Climate Variable Description

North Atlantic Oscillation (NAO)
Sea Level Pressure, Air
Temperature

Characterized by the pressure anomalies at
Ponta Delgada and Akyureyri at Iceland.

Southern Oscillation Index (SOI)
Sea Level Pressure, Air
Temperature and Precipi-
tation

Defined by pressure anomalies in Tahiti and
Darwin, Australia

Pacific/North American Index (PNA) Sea Level Pressure
Anomalies at the North Pacific Ocean and
the North America

Antarctic Oscillation (AAO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20◦S poleward

Arctic Oscillation (AO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20◦N poleward

Western Pacific (WP) Sea Level Pressure

Low frequency variability over the North
Pacific with one center located over the
Kamchatka Peninsula and another broad
center of opposite sign covering portions of
southeastern Asia and the low latitudes of
the extreme western North Pacific

Tahiti and Darwin, Australia and captures fluctua-
tions in pressure around the tropical Indo-Pacific re-
gion that correspond to the El Niño Southern Oscilla-
tion (ENSO) climate phenomenon [13]. A high value
of SOI indicates higher pressure anomalies in the east-
ern tropical Pacific around Tahiti and lower pressure
anomalies around Indonesia and northern Australia,
while a low value of SOI is associated with the reverse
conditions. Figure 2 shows the time series of pressure
anomalies at Tahiti (measured at 17.5 S, 150W) and
Darwin (measured at 12.5S, 130E).
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Figure 2: Pressure anomaly time series for the South-
ern Oscillation

As mentioned, climate indices, including dipoles,
are of great importance in understanding climate
variability. Table 1 lists some dipoles that are well
known to climate researchers. These dipoles have
been discovered by observation, e.g., SOI and NAO,
or by EOF analysis [12], e.g., AO. However, all these
discoveries have required considerable research and
insight on the part of the domain experts involved.
Because of the amount of effort involved and the
possibility of missing indices, an automated approach
to climate index discovery could be quite useful.

One of the first attempts in this direction was
Steinbach et al [8, 9, 10]. The approach used a shared
nearest neighbor (SNN) [2] clustering approach to
find climate indices. More specifically, it built a
graph of all locations on a latitude-longitude grid
based on the positive pairwise correlations between
the anomaly time series of temperature or pressure at
these locations and then found clusters in this graph.
The centroids of these clusters or the differences
between two centroids were then used as candidate
climate indices. Many of the resulting candidate
indices showed a high correlation with known climate
indices and were similar in their level of impact on
land climate variables such as temperature.

Tsonis et al. [14] pioneered the use of complex
networks to study climate systems. The authors con-
structed networks using nodes on a 5◦x 5◦grid on the
globe, where the edges of the network were defined
in terms of the (absolute) correlation values between
the anomaly time series of climate variables (SST,
SLP) of all the pairs of nodes. From this complete



correlation graph, only the edges with significant cor-
relation (> 0.5) were retained. In the tropics, the
network had very high connectivity and resembled a
complete graph, while away from the equator, the
network showed characteristics typical of a scale free
network. The authors further showed that the su-
pernodes in the scale-free network corresponded to
major climate indices such as NAO and PNA [14, 15].
Other researchers have also applied complex networks
to climate for examining the structure of the climate
system Donges et al. [1], analyzing hurricane activ-
ity Forgarty et al. [3], and finding communities in
climate networks and how they correspond to known
climate patterns Steinhaeuser et al. [11].

In our work, we present comprehensive tech-
niques to systematically find climate indices that are
dipoles from the climate data. In the other ap-
proaches, negative correlations have often been ig-
nored [8] or only absolute values of correlations have
been considered [14]. However, as we show in Section
3, negative correlations are key for detecting dipoles,
and thus, must be preserved in both sign and magni-
tude. In addition, a threshold is often used to elimi-
nate spurious correlations, but using the same thresh-
old for positive and negative correlations is not appro-
priate since negative correlations are usually weaker
and many nearby locations have high positive corre-
lation. We also study the change in climate indices
over time unlike [8]. Although some of the approaches
based on complex networks have taken time into con-
sideration, we go further, defining dynamic climate
indices and evaluating the improvement that results
in terms of evaluating the impact on land.

1.1 Our Contributions: More specifically, the
contributions of our paper are as follows:

1. We show the importance of treating negative cor-
relations in climate data differently than positive
correlations unlike [8, 14, 1].

2. We present algorithms for discovering dipoles
from climate data that are cognizant of the pos-
itive and negative nature of correlation. This
includes an algorithm based on discovering com-
munities in complex networks. These algorithms
are able to identify most of the major existing
dipoles in climate data with higher correlation
than current techniques.

3. Our approach provides a novel framework for
studying the change in the dipoles across both
space and time. Investigations using this frame-
work reveal that the area weighted impact on the
land is higher if the dipole climate indices are de-
fined by moving rather than fixed locations. The

utility of dynamic dipoles has been discussed by
Portis et. al in [7]. However, to the best of our
knowledge, this paper is the first one to compute
dynamic climate indices automatically and study
their impact on the local climate variables.

1.2 Organization of the paper The paper is
organized as follows: Sections 2 and 3 describe the
data and the preliminary analysis needed for the
network construction, respectively. Our algorithms
for dipole detection are presented in Section 4, while
Section 5 discusses the dipoles discovered from the
data. Section 6 provides an evaluation of the results
with respect to existing climate indices and other
work. Conclusions and possibilities for future work
are presented in Section 7.

2 Dataset

For our analysis, we use pressure climate data from
the NCEP/NCAR Reanalysis project provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA
[17]. The NCEP/NCAR reanalysis project has data
assimilated from 1948 – present which is available
for public download at [18]. We focus on sea level
pressure, which consists of monthly mean values at a
grid resolution of 2.5◦longitude x 2.5◦latitude on the
globe. In all, we have 62 years of data (corresponding
to 744 monthly values) for 10512 grid locations on the
globe. We chose pressure because it is an important
climate variable and many of the well known climate
indices are based upon it. Air temperature, although
also important, is locally correlated with pressure.

3 Network Construction Method

We use a network construction method similar to [14]
and [1] except that we do not threshold the networks
by taking the absolute value of correlation and us-
ing a single threshold. Instead, we define separate
thresholds for positive and negative correlations as is
further discussed in section 3.3. We also use smooth-
ing. The details of network construction are provided
in the following subsections.

3.1 Data Smoothing The NCEP/NCAR Re-
analysis data consists of monthly mean values for
each of the climate variables. When we consider pair-
wise linear correlation between two time series, an
anomalous peak or a valley around a month can dis-
tort the correlation value. In order to remove such
inconsistencies, we smooth the data by considering
the moving average of three months.

3.2 Seasonality Removal Generally, climate
data has a strong seasonality signal due to the Earth’s
revolution. The seasonality component is typically
uninteresting and masks other more interesting sig-



nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end− start+ 1

end∑
y=start

xy(m),∀m∈{1..12}

xy(m) = xy(m)− µm,∀y∈{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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Figure 3: Distribution of correlation
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Figure 4: Distribution of correlation after filtering
edges < 5000 km

We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is different for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62



years of data. Constructing such networks enables us
to study the changes over time and is important in
understanding the dynamics of the climate network.

4 Our Approach to Discover Dipoles

Automatic discovery of candidate dipoles faces sev-
eral challenges. First, a formal definition is needed.
For this work will will define dipoles as pairs of re-
gions whose locations have strong negative correlation
with locations in the other region and strong positive
correlation with locations in the same region. The
reason to look at regions instead of single locations is
that the correlation between single locations can eas-
ily be spurious. On the other hand, if the size of the
regions gets too large, the climate phenomenon will
be diluted or disappear, so a careful balance needs to
be striked out.

In the previous section, we presented a method
to construct a weighted undirected graph where the
nodes are location on the earth and the edge weights
represent the strength in correlation in the time series
of climate data at the two end points of the edge. The
scale of the correlation ranges from -1 to 1, where
1 means perfect correlation and -1 indicates perfect
anti-correlation. From the definition of a dipole, two
locations within the same region of the dipole should
share a strong positive correlation with each other
while two locations in different regions of the dipole
should have a strong negative correlation between
them. Additionally, each region of the dipole should
be geographically contiguous.

4.1 Algorithm for Constructing Dipoles(A1)
Our algorithm captures the essential characteristics
of the dipole by a very simple mechanism. It first
picks a negatively weighted edge from the graph and
builds regions around it. This edge can be picked in
several ways and the results of the algorithm depend
on this choice. We use a simple approach that starts
with the most negative edge in the network. The
two end points, say pt1 and pt2, of the starting edge
constitute two points of the dipole (of opposite po-
larity). Consider two sets of K number of locations,
N1 and N2, that have the most negative correlations
with pt1 and pt2, respectively. Similarly consider two
sets of K number of locations, P1 and P2, that have
most positive correlation with pt1 and pt2, respec-
tively. If a node in N1 which belongs to the list of
most negative edges on pt1 is in P2, i.e. it is also
very highly positively connected to node pt2, then it
becomes part of the dipole region consisting of pt2.
Similarly if a node in N2 is also in P1 then it becomes
part of the region consisting of pt1. In other words, if
a node is highly negatively connected with node pt1
and highly positively connected with node pt2 then

it becomes a part of the dipole region defined by pt1
and pt2 . The details of the algorithm are presented
below.

Algorithm 1 A1: Nearest neighbor approach to find
dipoles

Require: Two starting points pt1, pt2 of the dipole, K
the number of nearest neighbors to examine
Region1⇐ pt1
Region2⇐ pt2
P1⇐ K number of positive nearest neighbors of pt1
N1⇐ K number of negative farthest neighbors of pt1
P2⇐ K number of positive nearest neighbors of pt2
N2⇐ K number of negative farthest neighbors of pt2
for i = 1 to K do
{For every node in N1, N2 check if it is in P2, P1
respectively}
ind⇐ find(N1(i), P2)
if ind 6= 0 then

Region2⇐ Region2 ∪N1(i)
end if
ind⇐ find(N2(i), P1)
if ind 6= 0 then

Region1⇐ Region1 ∪N2(i)
end if

end for
if size(Region1) ≥ MIN-DIPOLE-SIZE then

if size(Region2) ≥ MIN-DIPOLE-SIZE then
return (Region1, Region2)

end if
end if
return ”no dipoles found”

It could happen that the starting edge has a
spurious correlation and the regions around it do not
lead to a dipole. In order to verify this, we check
whether the size of the two regions has grown to be
sufficiently large enough and only then label the two
regions as a dipole. After finding a dipole, we remove
the edges of the dipole from the network and continue
finding further dipoles by picking up the next most
negative edge in the graph until the resultant graph
becomes very sparse or the most negative edge in the
graph falls below a threshold. We used -0.4 as the
threshold a negative edge must have in order to be
considered by the dipole algorithm. There are about
1.5 million edges in the graph that have a negative
correlation lower than -0.4.

Apart from the choice of starting node, this
algorithm also depends on the value of K. We studied
the impact of several different choices for the value of
K (100, 300, 500, 1000, 2000). If we choose K to
be very large, the regions of dipoles are very large
(and often non-contiguous) whereas for a very small
value of K the size of dipoles is small and might
not be a good representative of the actual dipole.



Based on these empirical observations, we set K to be
300. This choice of K ensures that the two regions of
dipoles are of a reasonable size. However we evaluate
our results for different values of K.

Another key point to observe about this algo-
rithm is that we do not explicitly check if region 1 or
region 2 are contiguous or not. Since we consider the
top 300 positive neighbors of a point due to spatial
autocorrelation they will very likely be contiguous,
however this is not guaranteed.

4.2 Community Based Method In the previ-
ous subsection, the method presented considered all
the locations on the earth for building the dipole re-
gions but the regions around the dipoles could be non-
contiguous. In order to overcome this limitations, we
consider partitioning the network before running A1.
Network paritioning makes the resulting process more
robust by constraining the search of dipoles within a
much smaller region than the whole Earth, i.e., within
a community consisting of positively and negatively
correlated nodes.

We use a community detection algorithm for par-
titioning the network. The main goal of a commu-
nity based approach is to partition the network into
several smaller subsets of nodes and make the algo-
rithm A1 less sensitive to the variability at smaller
non contiguous locations that should not be a part
of the dipole. The aim of clustering is to find regions
containing nodes that are highly positively or nega-
tively correlated. We can achieve this goal by guiding
the community detection algorithm into partitioning
the network into appropriate clusters by choosing the
correlation thresholds as discussed in 3.3. Using the
histogram of thresholds and empirical evaluation, we
set the positive threshold to be very high (close to
0.85) so that only nearby contiguous locations form
an edge and the negative threshold to be lower (close
to -0.4) so that the significant dipoles are still cap-
tured.

For community detection, we chose Walktrap
algorithm [6] which is based upon random walks.
This algorithm is based on the fact that random walks
tend to become trapped in dense part of the network
corresponding to communities (clusters). Once we
get communities from the entire network, we find
dipoles within a community by using algorithm A1
and picking up the most negative edge within the
community as the starting edge.

4.3 Summary: Thus to summarize, our algorithm
for dipole detection consists of the following steps -

1. Construct the anomaly series from the smoothed
data by removing the seasonality as mentioned
in section 3.2.

2. Construct the network using the value of correla-
tion from the anomaly data for different windows
of time periods and for each network, threshold
it to retain only the edges with significant corre-
lations as described in section 3.3.

3. Generate clusters from the network data using
clustering/community detection as mentioned in
4.2. (Alternatively we can run A1 directly on the
entire graph.)

4. Using algorithm A1 within a cluster, separate
the two ends of all negatively correlated edges
within it into two buckets such that nodes within
a bucket are positively correlated and the nodes
in opposite buckets are negatively correlated .

5. The algorithm returns the two buckets formed
from step 4 as dipoles if the size of each bucket
is greater than a threshold.

5 Results

We ran our dipole detection algorithm A1 and its
community version on the pressure data set from the
NCEP/NCAR. We constructed anomaly data using
the base for mean to be the entire 62 year duration.
The networks were constructed for a period of 20
years each with a sliding window of 5 years so as
not to introduce abrupt changes between networks.
Thus we had 9 networks spanning 20 years each.
Before running the community detection algorithm,
we threshold the graph using a 0.85 value for positive
correlation and -0.4 value for negative correlation.
We use these thresholds with the intuition that it
helps us include all the significantly negative edges
in the graph but we are still very strict for the
positive edges since we need them only to construct
homogenous regions around each end of the dipoles.
This threshold helped us get all the major dipoles
as a part of a community each. In order to find
communities, we used walktrap version 2 with default
parameters (random walk length=4). The following
sections describe some of the well known dipoles that
we discovered from the data.

• Southern Oscillation: The SO is one of the most
important dipole in climate. It is clearly seen in
all the networks with correlations close to 0.9.

• North Atlantic Oscillation: NAO is a well es-
tablished fluctuation in opposite phase of the
climate of Greenland/Iceland and northern Eu-
rope. From the data we see that NAO is one of
the strongest signals. When we pick up the most
negative edge in the graph, most of the time it is



Figure 5: Different phases of NAO seen in pressure data

Figure 6: Different phases of SOI seen in pressure data

in the NAO region. The North Atlantic Oscilla-
tion is seen very clearly in all the 9 networks of
20 year periods.

• Arctic Oscillation: The Arctic Oscillation is
the pressure anomaly around the North pole
and is defined on the basis of the first leading
component of an EOF analysis using the region
north of 20N latitude. It does not have a pair of
physical locations associated with it. However
using our method we are able to find it in all the
9 networks with a very high correlation.

• Antarctic Oscillation: The Antarctic Oscilla-
tion measures the anomaly of pressure around
the Antarctic region. This oscillation is the ana-
log of the Arctic oscillation in the southern hemi-
sphere and is also defined by EOF analysis of
locations south of 20S. We see the Antarctic Os-
cillation in all the climate networks. However
the climate indices data from the Climate Pre-
diction Center is defined from 1979 onwards[19].
Hence we can only compare its correlation with
known climate indices for the last two networks.

• Western Pacific Index: The Western Pacific in-
dex is north south dipole around the western Pa-
cific with one end located over the Kamachatka
peninsula and the other end in southeastern Asia
and the subtropical north Pacific.

6 Experimental Evaluation

In order to evaluate the goodness of the dipole regions
generated, we look at three things -

1. Strength of the negative correlation between
the two regions of the dipole. Higher negative
correlation implies a stronger dipole.

2. Correlation with known dipole indices. This
highlights the ability to reproduce known
dipoles.

3. Impact of the dipole indices on land by comput-
ing an area weighted correlation of land temper-
ature anomalies with the dipole indices. This
highlights the ability of data driven dipoles to
potentially outperform known dipoles.

6.1 Negative Correlation within regions of
Dipole From the definition of the dipole, the two
regions forming a dipole should be negatively corre-
lated with each other. To compute the strength of
the negative correlation across the two regions, we
look at three values -

1. The mean value of the correlation between all the
locations pairs across two regions constituting
the dipoles. We call this value mean of all pairs.

2. The best correlation in the two regions of the
dipole represented by the most negative edge in
the two regions. We call this value the best pair.

3. Compute the mean of the anomalies of all the
locations at each region and then take the corre-
lation between them. We call this pair of means.

Table 2 shows the three correlation values of the
dipole regions discovered by our algorithms. The
table reports the mean values for all the 9 networks.



Figure 7: Different phases of AO seen in pressure data
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Figure 8: Different phases of Antarctic Oscillation seen in pressure data

From the table it can be seen that all the regions
are strongly negatively correlated, indicating that the
regions indeed consist of strong opposing pressure
polarities.

We performed a further analysis of the SOI region
and found that the negative correlation between
Tahiti and Darwin is not as strong as several other
location pairs. Fig 9 shows the correlation between
Tahiti and Darwin as well as the best pair results
from our two dipole finding algorithms. This results
indicates that the underlying phenomenon leading to
the negative correlation is not fixed at Tahiti and
Darwin and that SOI and other climate indices are
perhaps better captured with dynamic clusters.

0 2 4 6 8 10
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

Networks

C
o
rr

e
la

ti
o
n

 

 

Tahiti−Darwin

A1(best pair)

A1 +Community(best pair)

Figure 9: Best negative correlation for the SOI
cluster. Lower curves are better.

6.2 Comparison with known Climate Indices
In order to evaluate the goodness of the dipole
clusters found, we compared them with some well
known climate indices. For each of the 9 network
periods, we generated a set of dipoles from the
corresponding network. For every dipole belonging to
a time period, we took the two clusters belonging to
the dipole and computed their centroids by taking the
mean of the anomaly at those locations during that
time period. We computed the difference in between
the two cluster centroids to create a time series which
is then compared with all the climate indices over
that period using linear correlation. We kept track
of the best correlation to the climate indices during
the period and recorded the dipole cluster that best
matched each climate index. We performed this step
for all the time periods. Table 3 shows the the best
correlation to each climate index of the dipoles found
using the two variations of algorithm A1 with a bin
size of 300. Although A1 + community shows weaker
correlation than A1 in a number of cases, the impact
of A1 + community is sometimes still better as is
shown later in the paper.

From Table 3 we see that using our algorithm
for with A1 with or without a community, we are
able to match that with an average precision of 0.88
and 0.86, respectively to find SOI. Another important
dipole that we find with very high correlation is the
Arctic oscillation. Climate scientists define the Arctic
Oscillation as the first leading component of an EOF
analysis and thus it does not have interpretation
in terms of pairs of locations. However, using our
method we are able to find a pair of negatively



Dipole A1 A1 + community
Mean of all pairs Best pair Pair of means Mean of all pairs Best pair Pair of means

SOI -0.4425 -0.5993 -0.3658 -0.4482 -0.6221 -0.3426
NAO -0.4584 -0.7171 -0.6997 -0.4598 -0.7170 -0.7019

AO -0.5071 -0.7405 -0.6950 -0.5063 -0.7405 -0.6974
AAO -0.4187 -0.5478 -0.4988 -0.4173 -0.5639 -0.4345
WP -0.4000 -0.5139 -0.4424 -0.4069 -0.5301 -0.4635

Table 2: Strength of negative correlation of identified dipoles using our algorithm.

correlated clusters whose difference correlates very
well with the AO climate index (as high as 0.85).

To evaluate the sensitivity of our analysis to
the choice of the dipole bin size, K, we looked at
the mean correlation with the climate indices using
different values of K. These results are shown in
Fig 10. As expected a small value of K gives very
focused patterns for SOI and NAO and leads to better
correlation because they are actually defined by single
point locations. However we see that at very small
values of K, the correlation of the dipole cluster with
AO or AAO is not as high as for larger values of
K. This is because the AO and AAO patterns are
not defined using single point locations, but instead
are defined as a summary of the behavior of a large
region.
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Figure 10: Effect of varying the region size K on A1

6.2.1 Comparison with existing approaches
We also compare our approach for finding dipoles
with existing approaches to find them. In [8], Stein-
bach, et al present a SNN clustering based approach
to find climate indices. We use the numbers as re-
ported in [8] for our comparison. The SNN cluster-
ing numbers are shifted correlations, however we for
our numbers we use linear correlations only. Comput-

ing shifted correlations will only improve the numbers
further. From 4 we see that our algorithm is better
than the existing approaches to find climate indices.
Note that for A1, we report the mean values that we
got from choosing K=300 as shown in Table. 3.

6.3 Area weighted correlation with land tem-
perature From the previous sections we see that we
can generate dipoles that dynamically change over
time and from the results we see that their corre-
lation with known climate indices is very high. In
order to study the changes in the dipole clusters over
time, we take their centroids and plot them on the
globe. Fig.11 shows the plot of moving centroids of
the Arctic Oscillation dipole. Fig 12 shows the plot
of moving centroids of the North Atlantic Oscillation
cluster.

Figure 11: Moving Centroids of Arctic Oscillation

We hypothesize that the climate indices are bet-
ter captured by considering them to be moving.To
verify this hypothesis, we compute the area weighted
correlation with the land temperature anomalies for
both static and the dynamic index for each of the 9
different network periods. Our dynamic index for SOI
is computed by taking the mean of the two regions of
the dipole and their difference. We also generated a
random baseline and compute the correlation of land



Table 3: Correlation of our dynamic indices with known climate indices (K=300)
Network A1 A1 + community

SOI NAO AO AAO WP SOI NAO AO AAO WP
1 0.8885 0.7686 0.8665 - 0.7166 0.8761 0.7686 0.8665 - 0.7163
2 0.8696 0.7729 0.8506 - 0.7231 0.7378 0.7711 0.8529 - 0.7232
3 0.9012 0.7312 0.8560 - 0.7400 0.8952 0.7317 0.8580 - 0.7399
4 0.8895 0.8044 0.8353 - 0.7306 0.8828 0.8043 0.8353 - 0.7298
5 0.8983 0.7279 0.8037 - 0.7523 0.8540 0.7283 0.8037 - 0.5017
6 0.9214 0.7498 0.8648 - 0.7602 0.9195 0.7488 0.8702 - 0.7408
7 0.8387 0.7769 0.8137 - 0.7604 0.8318 0.7819 0.8137 - 0.7318
8 0.8946 0.7581 0.8407 0.8763 0.7240 0.8933 0.7582 0.8407 0.8797 0.4369
9 0.8746 0.7609 0.8597 0.8835 0.7103 0.8737 0.7621 0.8597 0.8809 0.7095

Mean 0.8863 0.7612 0.8434 0.8799 0.7353 0.8627 0.7608 0.8445 0.8803 0.6642

Climate Indices SNN Clustering Our approach
(Shifted Correlation) A1 A1 + community

SOI 0.7312 0.8863 0.8627
NAO 0.7519 0.7612 0.7608
AO 0.7577 0.8434 0.8445

AAO - 0.8799 0.8803
WP 0.2857 0.7353 0.6642

Table 4: Comparison with existing approaches.

Figure 12: Moving Centroids of North Atlantic Os-
cillation

temperature anomalies using any two random loca-
tions. For each network period we picked 100 pairs
of random locations from the globe having a corre-
lation > 0 among them and computed the difference
between their anomalies and calculated their average
impact on land temperature anomalies. This consti-
tutes the random baseline. The mean of the random

baseline is shown in Fig.13 and 14 and the box around
the mean shows the interquartile range and the me-
dian. Fig.13 shows the comparison of impact on land
of our index, SOI, and the random baseline. These
results also show that both algorithms A1 and A1
+ community have a stronger impact on land tem-
perature anomalies than SOI—sometimes up to 90%
better. In fact, A1 + community gives a better per-
formance for all the network years. Note that A1 +
community gives better results than A1 even though
A1 showed slightly better correlation with static SOI
as shown in Table 3.

Instead of just looking at the centroid we also
compared the index generated from the best correla-
tion pair. The best correlation pair is the edge with
the strongest negative correlation in the dipole clus-
ter. Fig. 14 shows the area weighted correlation from
the best pair. We see that the best pair does not al-
ways perform better than the mean which provides
more stability to the index. The best pair still has
a better impact on land temperature anomalies as
compared to the SOI index. Fig. 15 and 16 show
the correlation with land temperature anomalies for
a single network. From the figures it can be seen that
the dynamic index is similar in pattern to the static
index but has a much stronger correlation.
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Figure 13: Area weighted correlation of land tem-
perature anomalies using SOI index vs our indices
generated from the cluster centroids

7 Conclusion and Future Work

This paper presents a novel approach to find dipoles
using the climate data. The problem of finding
dipoles has been of key interest to climate scientists as
it helps in a greater understanding of the teleconnec-
tions and several important extreme phenomenons.
Finding dipoles has been particularly interesting to
the data mining community as the underlying data
is not only large but also has a spatio-temporal na-
ture presenting challenges such as seasonality, high
variability, autocorrleation, etc. In this setting, we
propose a method based on greedy heuristics to iden-
tify dipoles. Our methodology seems to produce con-
siderably better results than the current state-of-art
algorithms.

The algorithm A1 proposed in the paper and
it’s community version is effective and efficient to
implement. Our community based approach to first
partition the large network of all locations on the
globe narrows the search space for A1 algorithm,
generates fewer candidate dipoles, removes spurious
connections and is able to match the performance
of A1. However, further investigation is needed to
determine if one of these algorithms is to be clearly
preferred to the other.

A larger significance of this work, which might
impact how climate scientists perceive the climate
indices, is that it shows climate indices are better
explained as centroids of dynamic clusters. So far,
climate scientists have mostly considered climate
indices to be fixed. The evidence that supports our
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Figure 14: Area weighted correlation of land temper-
ature anomalies using SOI index vs best correlation
pair in our dipole cluster given by the algorithms

claim is that the area weighted correlation of the SOI
index with land temperature anomalies is improved
by up to 90% by capturing the index as a centroid
of moving clusters rather than fixed locations. Given
the importance of the Southern Oscillation on the
climate of the globe, this result has significant impact
in terms of predictions in climate science. The
Southern Oscillation is closely tied with the El Niño
phenomenon which drives the extreme weather events
like tropical cyclones, droughts, hurricanes, etc. A
thorough evaluation of this is part of future work.

In addition to further evaluation and improve-
ment of the approaches presented in the paper, we
need to go beyond comparisons to current climate in-
dices to see if any novel dipoles can be discovered.
Although it is unlikely that any of these would be as
significant as NAO or SOI, such dipoles could still be
of great regional importance.
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