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Abstract—Rotating coherent structures of water known as
ocean eddies are the oceanic analog of storms in the atmosphere
and a crucial component of ocean dynamics. In addition to
dominating the ocean’s kinetic energy, eddies play a significant
role in the transport of water, salt, heat, and nutrients.
Therefore, understanding current and future eddy activity is
a central challenge to address future sustainability of marine
ecosystems. The emergence of sea surface height observations
from satellite radar altimeter has recently enabled researchers
to track eddies at a global scale. The majority of studies
that identify eddies from observational data employ highly
parametrized connected component algorithms using expert
filtered data, effectively making reproducibility and scalability
challenging. In this paper, we improve upon the state-of-the-
art connected component eddy monitoring algorithms to track
eddies globally. This work makes three main contributions:
first, we do not pre-process the data therefore minimizing the
risk of wiping out important signals within the data. Second,
we employ a physically-consistent convexity requirement on
eddies based on theoretical and empirical studies to improve
the accuracy and computational complexity of our method from
quadratic to linear time in the size of each eddy. Finally, we
accurately separate eddies that are in close spatial proximity,
something existing methods cannot accomplish. We compare
our results to those of the state of the art and discuss the
impact of our improvements on the difference in results.

I. INTRODUCTION

Very much like the atmosphere, our planet’s oceans expe-
rience their own storms and internal variability. The ocean’s
kinetic energy is dominated by mesoscale variability: scales
of tens to hundreds of kilometers over tens to hundreds
of days [20, 19, 5]. Mesoscale variability is generally
comprised of linear Rossby waves and as nonlinear ocean
eddies (coherent rotating structures much like cyclones in
the atmosphere; hereby eddies). Unlike atmospheric storms,
eddies are a source of intense physical and biological activity
(see Figure 1). In contrast to linear Rossby waves, the
rotation of nonlinear eddies transports momentum, mass,
heat, nutrients, as well as salt and other seawater chemi-
cal elements, effectively impacting the ocean’s circulation,
large-scale water distribution, and biology. Therefore, un-
derstanding eddy variability and change over time is of

Figure 1. Image from the NASA TERRA satellite showing an anti-cyclonic
(counter-clockwise in the Southern Hemisphere) eddy that likely peeled
off from the Agulhas Current, which flows along the southeastern coast
of Africa and around the tip of South Africa. This eddy (roughly 200 km
wide) is an example of eddies transporting warm, salty water from the
Indian Ocean to the South Atlantic. We are able to see the eddy, which
is submerged under the surface because of the enhanced phytoplankton
activity (reflected in the bright blue color). This anti-cyclonic eddy would
cause a depression in subsurface density surfaces in sea surface height
(SSH) data. Image courtesy of the NASA Earth Observatory. Best seen in
color.

critical importance for projected marine biodiversity as well
as atmospheric and land phenomena.

Until recently, ocean eddies were tracked using sea sur-
face temperatures (SST) and ocean color. Now, sea surface
height (SSH) observations from satellite radar altimeters
have emerged as a better-suited alternative for studying eddy
dynamics on a global scale. Eddies are generally classified
as either cyclonic if they rotate counter-clockwise (in the
Northern Hemisphere) or anticyclonic otherwise. Cyclonic
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Figure 2. Top: A schematic cross section of an anti-cyclonic eddy (in
the Northern Hemisphere) density surfaces are depressed within the eddy
causing an increase in SSH. The elevation of subsurface density surfaces
replenishes the upper part of the ocean with nutrients needed for primary
production. Bottom: A cyclonic eddy causes an decrease in SSH. Bottom
image by Robert Simmons of NASA. Best seen in color.

eddies, like the one in Figure 2 (bottom panel), cause a de-
crease in SSH and elevations in subsurface density surfaces.
Anti-cyclonic eddies, such as the one depicted in Figure 2
(top panel), cause an increase in SSH and depressions in
subsurface density surfaces. These characteristics allow us
to identify ocean eddies in SSH satellite data. In Figure 3,
anti-cyclonic eddies can be seen in patches of positive (dark
red) SSH anomalies, while cyclonic eddies are reflected in
closed contoured negative (dark blue) SSH anomalies.

We present a global eddy monitoring algorithm, Ed-
dyScan, that leverages the physical properties of eddies
to increase accuracy and scalability compared to existing
methods. Our method has three main contributions: first,
we do not pre-process the data, effectively increasing the
reproducibility of our results. Second, we employ theoretical
and empirical findings on global eddy size distributions to
reduce the algorithm’s computational complexity. Finally,
we improve accuracy by separating merged eddies better
than existing methods.

In the next section, we will briefly review existing eddy
tracking algorithms. In section 3, we introduce EddyScan
and the challenges associated with tracking eddies globally.
After that, we present our results and compare them to the
eddies identified by Chelton et al. [7] (CH11 hereafter).
We conclude the paper with a discussion of the study’s
contributions and future research directions.

II. PREVIOUS WORK

The earliest methods for automatic identification and
tracking of ocean eddies relied primarily on proxy variables
such as ocean color or SST. The main challenge when using
such proxies to track eddies is that they are influenced
by a variety of factors in addition to eddies. Thus it is
difficult to link changes in those variables to eddy activity
alone. Some of the earliest works based on image processing
techniques used an edge detection algorithm to detect eddies
along the Gulf Stream [14]. Similar image-based algorithms
included a neural-network model trained to identify eddies
from SST images [3] and an edge detection scheme to
isolate eddies between two consecutive SST images [12].
D’Alimonte [8] used the isothermal lines of the SST field
to automatically detect eddies. Finally, Dong et al. [9]
transformed SST observations into a thermal-wind-velocity
field and subsequently tracked eddies in the transformed
space.

The recent introduction of SSH satellite observations
provided researchers with data that are directly related to
ocean eddies. The majority of eddy tracking algorithms
define eddies as closed contoured (positive or negative)
SSH anomalies (see Figure 3). Initial studies built upon
techniques developed previously for turbulence simulations
[15]. Since then, numerous variations of the approach used
by Isern-Fontanet et al. [15] were introduced, e.g. [11, 4].
Chelton et al. [5] tracked eddies globally using a unified
set of parameters. They also introduced the notion of eddy
non-linearity (the ratio of rotational and transitional speeds)
to differentiate between eddies and Rossby waves. In the
most comprehensive SSH-based eddy tracking study to
date, CH11 identified eddies globally as closed contoured
smoothed SSH anomalies using a nearest neighbor search.
Recently, Faghmous et al. [10] proposed a spatio-temporal
approach to monitoring eddies as an alternative to exist-
ing image-based approaches. The authors used the eddies’
physical properties to sparsify the search space in time and
subsequently searched for eddies spatially. A more detailed
review of SSH-based eddy detection methods can be found
in Appendix B of CH11.

Despite a large body of work, eddy detection algorithms
continue to suffer from several limitations. First, water-
surface property signatures such as surface temperature or
color do not convey much information on the dynamic pro-
cess of eddies [13]. Second, certain SSH-based methods such
as those introduced by Chaigneau et al. [4] use derivatives
of the SSH field, which amplify the noise in the SSH signal
[7]. Connected component algorithms, such as CH11, tend to
be highly parameterized and apply scale-dependent filters to
the data to remove features larger (smaller) than a threshold
as well as to remove seasonal and internal variability (see
Appendix A in CH11 or online supplementary material of
[6] for full details on data filtering.) Additionally, CH11 was
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Figure 3. Global sea surface height (SSH) anomaly for the week of October 10 1997 from the AVISO dataset. Eddies can be observed globally as closed
contoured negative (dark blue; for cyclonic) or positive (dark red; for anti-cyclonic) anomalies. Best seen in color.

unable to systematically separate groups of eddies that were
merged together because of their close spatial proximity. The
spatio-temporal method proposed by Faghmous et al. [10]
still had several hard-coded parameters and did not track
many eddy properties (such as radius and amplitude).

h = 0

h = h0

h = -100 cm

Figure 4. Schematic of an anti-cyclonic eddy that is embedded in a large
scale background with a larger amplitude than the eddy. If we were to apply
a threshold at h = 0 the eddy would be missed. This is motivation to use
multiple threshold from h = −100cm to 100cm as suggested by CH11.
Figure adapted from [7]

III. METHODS

To monitor global eddy activity we used the Version
3 dataset of the Archiving, Validation, and Interpretation
of Satellite Oceanographic (AVISO) which contains 7-day
averages of SSH on a 0.25◦ grid from October 1992 through
January 2011 1. We tracked eddies globally as closed contour
of SSH anomalies. This was done in two steps: first we
identified features that displayed the spatial properties of
an ocean eddy. This was accomplished by assigning binary
values to the SSH data based on whether or not a vary-
ing threshold was exceeded, and subsequently identifying
mesoscale connected component features. We then pruned
the identified connected components based on other criteria
that are physically consistent with eddies at a given latitude.

1Available at http://www.aviso.oceanobs.com/es/data/products/
sea-surface-height-products/

Given the large variations in SSH on a global scale, track-
ing eddies globally presents several challenges: first, SSH
data is noisy. Second, until recently, nonlinear eddies were
commonly confused with linear Rossby waves in satellite
data [6]. Third, eddies can manifest themselves as local
minima (maxima) embedded in a large-scale background of
negative (positive) anomalies [5] (see Figure 4). Therefore,
applying a single global threshold would wipe out many
relevant features. Fourth, although eddies generally have an
ellipse-like shape, the shape’s manifestation in gridded SSH
data differs based on latitude. This is because of the stretch
deformation of projecting spherical coordinates into a two-
dimensional plane. As a result, one cannot restrict eddies
by shape (e.g. circle, ellipse, etc.) Finally, eddy sizes vary
by latitude, which makes having a global “acceptable” eddy
size unfeasible [13].

Our algorithm addresses some of these challenges, while
maintaining physical relevance:

• To address the challenge of identifying mesoscale ed-
dies superimposed on features with larger amplitudes,
we repeatedly threshold the data at regular 1cm in-
tervals from −100cm to +100cm. At each threshold
tri, we identify all connected components that have
an SSH anomaly of at least tri. The algorithm then
removes from consideration all pixels belonging to
the identified connected component and tri is incre-
mented. For identification of anticyclonic eddies, tri

is initialized at −100cm and increased in 1cm steps
to +100cm. Conversely, detection of cyclonic eddies
is accomplished by decreasing tri from +100cm to
−100cm. In this way, we identify the largest possible
closed contour of an eddy. The gradual thresholding
method was proposed by CH11 who also tested sub-
centimeter threshold increments but did not observe
increased accuracy.
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Figure 5. Mean weekly cyclonic (top) and anticyclonic (bottom) eddies by latitude as detected by EddyScan for the October 1992 - January 2011 period.

• To address the eddies’ varying size by latitude, we use
a quadratic function based on theoretical [2, 18, 17]
and empirical studies [5, 13, 7] to restrict a reasonable
eddy radius based on latitude.

• If an eddy is larger than expected at the latitude (see
previous point), there is a chance that two or more
eddies were mistakenly merged together. For these
“larger than normal” eddies, we apply a convex hull
function to determine the size of the smallest convex
set that contains all pixels comprising the eddy. If the
area of the convex hull is much larger than that of
the connected component, it is likely multiple merged
eddies and the connected component is not labeled as
an eddy. By discarding the connected component, it
will remain in the group of pixels to be examined at
later thresholds effectively increasing the chance that
a higher threshold would eventually break the larger
connected component into smaller features.

At a high level, our algorithm extracts candidate con-
nected components from SSH data by gradually thresholding
the data and finding connected component features at each
threshold. For each connected component, we apply five
criteria to determine that it is an eddy: (i) A minimum
eddy size of 9 pixels; (ii) a maximum eddy size of 1000
pixels; (iii) a minimum amplitude of 1 cm; (iv) the connected
component must contain at least a minimum/maximum and
(v) each connected component must have a predefined
convex hull ratio as a function of the latitude of the eddy.
The first four conditions are similar to those proposed by
CH11. The convexity criterion is to ensure that we select
the minimal set of points that can form a coherent eddy,
and thus avoid mistakenly grouping multiple eddies together.
Once the eddies are detected, the pixels representing the

eddy are removed from consideration for the next threshold
level. Doing so ensures that the algorithm does not over-
count eddies. Removing the pixels will not compromise the
accuracy of the algorithm given that the first instance an
eddy is detected will be at its most likely largest size as
a function of the threshold. The main distinction between
our implementation, EddyScan, and CH11 are two-fold:
First, we use unfiltered data while CH11 pre-process the
data. Second, to ensure the selection of compact rotating
vortices, CH11 required that the maximum distance between
any pairs of points within an eddy interior be less than
a specified threshold, while EddyScan uses the convexity
criterion to ensure compactness. The primary motivation to
use convexity is to reduce the run time complexity of the
algorithm from O(N2) to O(N). An examination of the
advantages of using convexity over a predefined maximum
distance can be found in the discussion section.

EddyScan’s pseudo-code is listed in Algorithm 1. An
open-source implementation in MATLAB is available at
https://github.com/jfaghm/ClimateCode.git

IV. RESULTS

We tracked eddies globally in weekly unfiltered SSH data
from October 1992 to January 2011 using the procedure
described in the previous section. On a weekly average,
there were 2100 cyclonic and 2077 anticyclonic eddies with
a larger number of eddies in the Southern Hemisphere. The
slight preference for cyclonic eddies is consistent with the
findings in CH112, although our results are not fully compa-
rable since they only report eddies with lifetimes of at least
4 weeks, while we do not track eddies across timeframes.

2Available at: http://cioss.coas.oregonstate.edu/eddies/nc data.html
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Figure 6. Aggregate counts for eddy centroids that were observed through each 1◦ × 1◦ region over the October 1992 - January 2011 period as detected
by CH11 (left) and EddyScan (right). These results show high eddy activity along the major currents such as the Gulf Stream (North Atlantic) and Kuroshio
Current (North Pacific). The high eddy counts along continental and map edges is an artifact of edge effects in the data that we will address in future
work. Note the difference in color scale between the the left ([0− 200]) and right panel ([0− 270]). This figure emphasizes the similarity in the spatial
distribution between the two methods since their exact eddy counts are not comparable (see text). Best seen in color.

Algorithm 1: EddyScan: An automatic global eddy
tracking algorithm

Input: SSH
Output: E : global eddy list with corresponding pixels

belonging to each eddy; A : the amplitude of each
eddy; S : the surface area of each eddy

For each timestep ti:
For each threshold tri ∈ {−100 : 100}:

if SSH value at pixel i (pi) < tri:
pi = 0;

else
pi = 1;

Identify all connected component objects left;
For each connected component CCi :

if CCi meets criteria listed in text
label all pixels pj ∈ CCi as an eddy;
remove pj from data;

end
end

end

Figure 5 shows the average latitude-based distribution of
cyclonic and anticyclonic eddies. There is a significant
difference in the total number of eddies between EddyScan
and CH11 (not shown; but they report approximately 3000
eddies per frame to our 4200) most notably at high latitudes
and along the equator. The most likely explanation is that
the high-pass filtering, while it enhances certain features it
also removes others especially at higher latitudes (near the
equator) where eddies tend to be small (large). Also CH11’s
spatial domain spanned 80◦N to 80◦S while we searched for
eddies from 90◦N to 90◦S.

Figure 6 shows the aggregated spatial distribution of
eddies on a 1◦ × 1◦ grid. Given that our algorithm detects
more eddies globally than CH11, due mostly to the fact that
CH11 only reports eddies that last four weeks or longer,

we used different color scales between the left ([0 − 200])
and right panel ([0 − 270]). The eddy centroid distribution
is similar to CH11 (right panel) where high density regions
tend to be along currents (i.e. Gulf Stream (North Atlantic)
and Kuroshio Current (North West Pacific)) and in open
oceans.

V. DISCUSSION

Our method provides a significant advance to the state
of the art by reducing the computational complexity of
common connected component algorithms. However, our
results depend on a few parameters - most notably data
filtering (or lack thereof) and our convexity ratio parameter.
Below we analyze the advantages and sensitivity of our
results to such parameterazation.

A. Sensitivity of results to pre-processing

Spatial filtering is a commonly used technique in eddy
detection [7]. Numerous studies employ expertly-designed
filters to remove signals larger (smaller) than certain scales
in addition to filtering seasonality and noise. While filtering
has its benefits, the risk of removing important features in
the signal is always present. The results presented in the
previous section were produced without any preprocessing.
To test the sensitivity of the results to filtering, we applied a
high-pass filter to remove signals larger than 10◦ by latitude
and 20◦ by longitude similar to CH11. Figure 7 shows
the difference in global cyclonic eddies identified by our
algorithm using unfiltered (top panel) and high-pass filtered
data (bottom panel) for a single time-step. In the filtered
data case, we find significantly more eddies at the equator
and they tend to be much smaller than expected (eddies have
a radius of 200km near the equator [13]). We suspect that
these “ghost eddies” are the result of residue noise left after
filtering out large features at the equator. Moreover, filtering
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changes the contours of the data, which means the connected
components that result from thresholding a filtered dataset
will be geometrically different than those based on the raw
data. Because eddy measurements are made on the geometry
of the connected component (e.g. surface area) as well as
the underlying physical data (amplitude), filtering becomes
a source of measurement error.

Figure 7. An example of the effect high-pass filtering has on EddyScan’s
output for single time-step. Top: Global cyclonic eddies as detected by
EddyScan using unfiltered SSH data. The data are on a grayscale for easier
visualization of the detected eddies. Bottom: Same as top except for high-
pass filtered data. High-pass filtering might introduce ghost eddies along
the equator as well as noise in eddy characteristics (radius and amplitude).

B. Advantage of using a convexity metric

As described earlier, binarization of the SSH data during
connected component analysis often leads to merging mul-
tiple eddies into a single connected component. It is thus
necessary to discern those coherent structures representing
a single eddy from those comprised of multiple features
merged together. Although the vortical character of eddies
makes their SSH contours theoretically circular, multiple ex-
ternalities prohibit us from simply imposing a circularity cri-
terion on connected components. The presence of noise and
SSH variability are examples of such factors. In addition,
the projection of the SSH data into a two-dimensional grid
induces substantial geometric distortions, and re-projecting
connected components back onto a spherical surface to
analyze their geometry is computationally expensive. CH11
addresses this problem by restricting any two pixels of a
connected component to be within a maximum distance

based on latitude. This criterion successfully removes con-
nected components that are particularly eccentric or large,
but does not address the issue of merging smaller eddies
together (see Appendix B in [7]). More importantly, the
maximum distance criterion is extremely inefficient as it
requires comparing every pair of pixels within a connected
component – a function that grows quadratically with the
number of pixels in the connected component. Instead of
restricting the maximum distance between any two pixels,
we proposed to monitor a feature’s convexity to ensure
multiple small eddies are not labeled as a single larger
eddy. Our convexity criterion addresses the two issues of
long incoherent features and breaking merged features while
being computationally inexpensive. Figure 8 shows how
without the convexity criterion (top panel) our algorithm
groups several smaller eddies into a single eddy, whereas
CH11’s maximum distance criterion successfully breaks the
large eddy into smaller ones. As expected, when we apply
our convexity criterion (bottom panel) we are able to identify
similar eddies to CH11.

Figure 8. An example of the effect our convex hull criterion has on
breaking large blobs. Top: Without the convexity requirement, EddyScan
(red circles) labels a very large blob as a single eddy (large purple ellipse),
whereas CH11 (yellow crosses) labels it as four different eddies. Bottom:
EddyScan with the additional convex hull constraint successfully breaks the
large blob into 4 distinct eddies similar to CH11. The convex hull criterion
is more efficient than the maximal distance criterion used by CH11. Best
seen in color.

There are other instances, however, when the maximum
distance criterion is unable to avoid merging several smaller
eddies together. Figure 9 shows an example where the
minimal distance between any pair of pixels in the blob is
met despite there being several eddies. As a result CH11
(yellow cross) labels the entire feature as a single eddy.
EddyScan, however, is able to break the large blob into
coherent small eddies.
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Figure 9. An example of when CH11’s maximum distance criterion is
met, yet the large feature is in fact several eddies merged together. Top: a
zoomed-in view on SSH anomalies in the Southern Hemisphere showing at
least four coherent structures with positive SSH anomalies. Bottom: CH11
(yellow cross) identifies a single eddy in the region, while our convexity
parameter allows EddyScan to successfully break the larger blob into four
smaller eddies. The SSH data are in grayscale to improve visibility of the
identified eddies. Best seen in color.

C. Sensitivity of results to convexity parameter

Our results depend on the convexity ratio parameter (the
ratio of the feature’s area to its convex hull area). A ratio of
one indicates that the identified feature is perfectly convex.
A low ratio indicates a less coherent feature. We tested
EddyScan’s performance using a variety of convexity ratios
and settled on 0.85 because it gave the best balance between
cohesiveness and accuracy. Figure 10 shows the difference in
EddyScan’s output based on the choice of convexity ratio. If
the convexity ratio is set too low (top panel), large blobs are
labeled as eddies throughout the globe dramatically reducing
the global eddy count (e.g. see lower right corner of the top
panel in Figure 10). If the convexity ratio is set too high
(bottom panel), the global eddy count is not severely affected
(the count increased by less than 1% globally) but the mean
amplitude and radius are. In the bottom panel of Figure
10 the SSH anomalies are in grayscale for clarity, it easy
to see in its attempt to finding the most compact features
possible, the contours of many cyclonic eddies are much
smaller than expected as shown by the white contours around
many eddies (the more accurate labeling would encompass
all positive anomalies or white pixels within the eddy’s
perimeter).

D. Complexity Analysis

To ensure that only compact rotating vortices are labeled
as eddies, CH11 imposes a restriction that the distance
between any two pixels in a connected component must be

Blob area / convex hull area = 0.5

Blob area / convex hull area = 1

Figure 10. EddyScan’s sensitivity to the choice of convexity parameter.
Top: When the minimal convexity ratio is set too low (0.5), large incoherent
blobs are labeled as eddies significantly affecting the global eddy count.
Bottom: When the minimum convexity ratio is set to one, identified eddies
are much smaller than their actual size because the algorithm picks the
most compact features possible. Blue area characterize land. Best seen in
color.

less than a latitude-specific maximum distance. Computing
the distance between every pair of pixels in a set of size N
would result in a run-time complexity of O(N2). This opera-
tion is prohibitively expensive especially with the additional
overhead to convert the distances from pixel/Euclidean to
Great Circle distance. In contrast, our convex hull criterion
has a runtime of O(N) given that the pixels are already
sorted lexicographically (by row) [1], resulting in significant
speedup and increased accuracy (by successfully separating
merged eddies).

VI. CONCLUSION AND FUTURE WORK

We presented EddyScan: an automated, accurate, and
scalable eddy detection algorithm for SSH data. EddyScan
improves on the state of the art by not preprocessing the
data, effectively breaking up merged eddies, and running in
a fraction of the time required by traditional eddy detection
methods – a significant improvement given the expected
dramatic increase in earth science data.

Our method suffers from a few limitations: First, it does
not track eddies across time, making it susceptible to noise
and linear Rossby waves. Second, we do not account for
edge cases and coastal regions where over-counting tends
to be high. Finally, imposing a minimal eddy size of 9
pixels makes it impossible to identify smaller eddies that
are common at higher latitudes.
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Our methodology can be further improved by applying
a spatio-temporal context to eddy monitoring. As shown in
Faghmous et al. [10] monitoring the temporal profile of SSH
data can decrease false discovery rates by ensuring eddies
persist over time. CH11 tracks eddies across time and only
keeps eddies that persist for at least 4 weeks. This approach
is only feasible by restricting the minimal eddy size to 9
pixels; otherwise one cannot resolve eddies across frames
due to the numerous small eddies in a neighborhood. An
alternative approach would be to relax the minimal eddy
size restriction and use the temporal profile of each “eddy”
to ensure that it is not spurious. Another improvement would
be to incorporate space and time information simultaneously
to label eddies, in contrast to Faghmous et al. [10] where
the spatio-temporal analysis was done orthogonally (first
in time, then in space). Network-based approaches such as
those presented in [16] may be useful in this context. Finally,
this approach could be generalized to employ a systematic
spatio-temporal analysis to monitor persistent features within
a continuous and noisy field.
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